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Abstract

3D hand pose estimation is a fundamental task in understanding human hands. How-
ever, accurately estimating 3D hand poses remains challenging due to the complex
movement of hands, self-similarity, and frequent occlusions. In this work, we address
two limitations: the inability of existing 3D hand pose estimation methods to estimate
aleatoric (data) uncertainty, and the lack of uncertainty modeling that incorporates joint
correlation knowledge, which has not been thoroughly investigated. To this end, we
introduce aleatoric uncertainty modeling into the 3D hand pose estimation framework,
aiming to achieve a better trade-off between modeling joint correlations and computational
efficiency. We propose a novel parameterization that leverages a single linear layer to cap-
ture intrinsic correlations among hand joints. This is enabled by formulating the hand joint
output space as a probabilistic distribution, allowing the linear layer to capture joint corre-
lations. Our proposed parameterization is used as a task head layer, and can be applied as
an add-on module on top of the existing models. Our experiments demonstrate that our
parameterization for uncertainty modeling outperforms existing approaches. Furthermore,
the 3D hand pose estimation model equipped with our uncertainty head achieves favor-
able accuracy in 3D hand pose estimation while introducing new uncertainty modeling
capability to the model. The project page is available at https://hand-uncertainty.github.io/.

Introduction

iv:2500.01242v1 [cs.CV] 1 Sep

éﬂderstanding human hands is fundamental for applications ranging from robotics to AR/VR [9,

]. The ability to perceive and interpret human hands significantly enhances the dexter-
ity of robot-assisted tasks and ensures seamless human-like robot-object interactions. In
learning from human demonstrations, robots can acquire human hand behavior by observing
these demonstrations [13, 19, 44]. In this work, we address two key limitations found in
state-of-the-art methods for estimating 3D hand pose.

(1) Inability to estimate the aleatoric (data) uncertainty. While recent works in learning-
based 3D hand pose estimation [20, 28, 30, 35, 42, 53, 54, 55, 60] have made significant
progress, accurate 3D hand-pose estimation inherently faces uncertainty from in-the-wild
video. These uncertainty arise from the high number of degrees of freedom present in
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hands [2], frequent occurrence of self-similarity and occlusion [37, 49], and motion blur
due to their dynamic nature [39, 41]. Against these observation noises, quantifying aleatoric
uncertainty enhances the confidence of the hand estimation models to be deployed in real-
world applications. (2) Uncertainty modeling in the absence of joint correlation knowledge.
Human hand offers many individual degrees of freedom, yet joint movements are corre-
lated [17, 23, 33, 34, 47]. Although the uncertainty of one hand joint can influence the
uncertainty of another joint, previous works [27, 38] model uncertainty entry-wise indepen-
dently under the independent assumption due to computational and parameter efficiency.

In this work, we introduce aleatoric uncertainty modeling into the 3D hand pose estimation
framework, achieving a better trade-off between correlation modeling and efficiency. We
propose a novel parametrization that leverages a single linear layer to capture the intrinsic cor-
relations among hand joints. To enable this, we design a probabilistic hand joint output space
that facilitates uncertainty modeling with consideration of joint dependencies. Specifically,
we begin by training a pre-trained large model [42] for aleatoric uncertainty estimation by
adding a transformer head that regresses the per-joint variance. We use a Gaussian negative
log-likelihood loss with a diagonal covariance matrix, which enables the network to predict
variances that represent the uncertainty of hand joints under the independence assumption.
The estimated uncertainty defines a probabilistic output space, from which we draw samples
and feed them into a single linear layer to transform the output space into a correlation-
aware space. Our parametrization serves as a mid-representation between diagonal and full
covariance matrix parametrizations. It provides higher expressiveness for capturing joint
correlations than the diagonal form, yet requires significantly fewer parameters than the full
covariance parametrization.

We demonstrate the effectiveness of our method on two standard benchmarks for 3D
hand pose estimation, FreiHAND [59] and HO3Dv2 [18]. Our method outperforms existing
aleatoric uncertainty modeling methods on uncertainty estimation. The key to our method’s
effectiveness is the formulation of the hand joint output space as a probabilistic distribution,
which enables the linear layer to effectively learn hand joint correlations. This approach
allows for an analytic representation of a structured covariance matrix, facilitating direct
estimation of uncertainty. Furthermore, our method maintains competitive accuracy in 3D
hand pose estimation, demonstrating that modeling uncertainty does not compromise pose
estimation performance. Our main contributions are summarized as follows:

* We introduce aleatoric uncertainty modeling into 3D hand pose estimation framework.

* We propose a novel parameterization that leverages a single linear layer to effectively
model inherent hand joint correlations, which is enabled by formulating the hand joint
output space as a probabilistic distribution.

* Comprehensive experiments demonstrate that our proposed method significantly out-
performs existing aleatoric uncertainty modeling methods in uncertainty estimation,
while maintaining accurate 3D hand pose estimation performance.

2 Related Work

3D hand pose estimation. 3D hand pose estimation from a single RGB image has received a
great attention for understanding complex hand interaction. The advent of deep learning has
especially improved the performance of 3D hand pose estimation compared to hand-crafted
geometric features. Most existing works [1, 14, 42, 46, 55] leverage the MANO parametric
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hand model [45] and regress the hand pose and shape parameters directly from an RGB image.
Other works [10, 16, 29, 30] follow a non-parametric approach and regress mesh vertex
coordinates directly from images for a more fine-grained reconstruction of hand surfaces.
Another line of work [4, 28, 35, 37] infer 3D hand joint positions of x,y and z, which serve as
a skeletal representation of hand posture. More recently, HaMeR [42] exploits transformer
networks [50] and train on a large dataset, achieving robust 3D hand reconstruction and strong
generalization to in-the-wild images. Our work addresses aleatoric uncertainty in 3D hand
pose estimation, which has been underexplored.

Uncertainty in deep learning. Uncertainty in deep learning can be categorized into aleatoric
and epistemic uncertainties [11]. Aleatoric uncertainty is attributed to the non-deterministic
nature known as data uncertainty. Epistemic uncertainty arises from model uncertainty due
to insufficient knowledge learned from the training data. In this work, we focus on aleatoric
uncertainty in 3D hand joint positions. We assume that the uncertainty is heteroscedastic [26],
indicating that it depends on the inputs to the model, as certain inputs may inherently have
higher uncertainty than others. A commonly used approach is to estimate the probability
distribution over the output, and train the network by minimizing the negative log-likelihood
(NLL) of the ground truth [3, 26, 56]. Caramalau et al. [5] demonstrates that jointly modeling
aleatoric and epistemic uncertainties is effective when applying an active learning framework
to estimating 3D hand pose from a single depth image. However, existing approaches for
estimating 3D hand pose from a single RGB image either overlook the heteroscedastic uncer-
tainty in input images or rely on latent distributions to implicitly capture aleatoric uncertainty
through sampling [51, 60], and they are not publicly available. Zhang et al. [57] applies
the NLL loss for 3D hand reconstruction to model output-space uncertainty; however, their
method is limited to modeling uncertainty in 2D hand joint positions, which may not accu-
rately reflect the uncertainty in 3D joint space. AMVUR [24] adopts a probabilistic framework
for 3D hand pose and shape estimation, inherently supporting uncertainty quantification in
3D hand joint positions. In this work, we explicitly model joint-wise uncertainty in the output
space by learning a Gaussian distribution over 3D hand joint positions and incorporating it
into the training objective through a simple yet effective NLL loss. Furthermore, we model
inter-joint dependencies using a single linear transformation, enabling an analytic formulation
of the structured uncertainty without relying on sampling-based approximations.

3 Method

3.1 Preliminary

Notation. We denote x € R% as the input image, f : R% — RYr as the feature extractor,
g : R — R% as the parameter regressor, and diag(-) outputs a diagonal matrix given a vector.
As shown in Fig. la, the model without uncertainty modeling is denoted as g(f(x)). The
uncertainty modeling [27] modifies the regressor g such that g(f(x)) ~ N (u,X) where N is
the Gaussian distribution with a mean u € R% and a covariance ¥ € R%*% The subsequent
paragraphs describe two approaches, categorized based on modeling the covariance matrix X:
diagonal and full covariance matrix.

Diagonal Covariance Matrix. The most widely used way for uncertainty modeling is a
diagonal covariance matrix. It is parameter-efficient because the regressor only needs to
output the mean and diagonal variance vector. The diagonal Gaussian modeling needs twice
the output dimensions, i.e., gaiqq : R — R>“ (See Fig. 1b). The half dimension is for the
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Figure 1: Illustration of deterministic modeling and correlation modelings of uncertainty.
(a) Deterministic modeling produces a single deterministic output, represented as point
embedding in the output space; (b) Diagonal and (c) Full correlation modeling of output
produce means and covariances of a Gaussian distribution, where the uncertainty of the
prediction is modeled by its variance. (d) Ours learns the variation of each dimension in the
output space and shared weight W which captures intrinsic hand joint dependencies, so that
our covariance matrix is represented by £ = Wo?W .

mean vector, U € R4 and the other half is for the variance vector, 6% € R% as follows:

8aiag(f(X)) ~ N (., diag(c?)). (1

In implementation, instead of using direct 62, the logarithm of ¢ is used with the exponential
function mapping to ensure the positive values. The model is trained by minimizing the
negative log-likelihood (NLL) loss with ground truth y as

2
y p—
Lyzz =logp(ylu,0°) = %"'051@%0? )
Full Covariance Matrix. In a full covariance
matrix, the regressor outputs all covariance Pasametrization  Uncertainty modcling _# Params. _ Example [# Params]
o Det inisti X dgd, 0.065M
matrlx elements as Diag(?n?ll:;?'l;r;f;nce v (independent) 211//11,, 0.129M
Full covariance v dy(dy+d2) 4.129M
gfull(f(x>) NN(IJ.,Z)7 (3) Ours 2dyd, +d, 0.133M

Table 1: The number of parameters. The
dimensions of feature and output are dy and
d,, respectively. We list the required number
of parameters for each parameterization. We
set dr=1024,d,=63, and k=21 for example.

where u € R% and X € R%*% (See Fig. Ic).
Since X should be a positive definite matrix,
we construct ¥ as AA T, which ensures X to be
positive definite. Although it is less parameter-
efficient compared to the diagonal covariance
matrix, this approach has a higher capacity for capturing correlations. The model is also
trained by minimizing the NLL loss as follows:

Lyie =logp(y|, ) = 3(y— 1) "=~ (y — ) + 5 logdet . “

The objective function involves the inverse covariance matrix. This introduces optimization
instability. Thus, it is more stable to directly estimate the precision matrix as ¥ = X!

In summary, the diagonal covariance matrix is parameter-efficient but does not capture
the correlation; the full covariance matrix has opposite properties. We propose a new mid-
representation that leverages a single linear layer which is parameter-efficient and effectively
captures the hand joint correlation in a probabilistic manner.
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Figure 2: Pipeline of our proposed method. We train a pre-trained large model [42] by
introducing an additional transformer head that estimates the variance for each joint under the
independent assumption. This estimated uncertainty then defines a probabilistic hand joint
output space, from which we sample and pass the samples through a single linear layer to
model the correlations between hand joints.

3.2 Correlation-Aware Aleatoric Uncertainty Estimation in Hand Joints

Our goal is to estimate the aleatoric uncertainty of hand joints with the incorporation of
joint correlation knowledge in an efficient yet expressive manner. The key idea is to define
a probabilistic output space based on per-joint uncertainties learned under an independence
assumption, and then transform it into a correlation-aware space using a single linear layer.
Aleatoric Uncertainty Estimation with Diagonal Covariance Matrix. We adapt HaMeR [42],
a recently proposed transformer-based model for hand pose estimation pretrained on large-
scale datasets to enable uncertainty modeling. In HaMeR, the Vision Transformer (ViT) [12]
backbone serves as a feature extractor and the mean 3D hand joint positions {3y, are regressed
by a transformer head followed by the MANO [45]. To enable uncertainty modeling, we
incorporate an additional transformer head, denoted as uncertainty regressor, to regress the
variance of each joint G%D. The model is trained by minimizing the NLL loss (Eq. (2)) with
ground truth 3D hand joint positions y3p. Up to here, the uncertainty modeling is same with
the diagonal covariance matrix.

Probabilistic Hand Joint Output Space. We define a probabilistic hand joint output
space under a zero-mean Gaussian assumption, where per-joint variances learned under
an independence assumption serve as the diagonal elements of the covariance matrix as
p(z|x) ~ N (0,diag(c3p,)). We draw N samples from p(z|x) and feed-forward these sam-
ples to single linear layer of weights W, ensuring that the final output follows p(§|z) ~
N (0,Wdiag(c3, )W) by the linearity of the Gaussian. By adopting the zero-mean assump-
tion, we remove the dependency between the weights W and the mean (i35, enabling the
model to focus solely on capturing correlations. Afterwards, the mean 3D hand joint positions
U3p are added to this output space. As a result, we obtain:

p(§12) ~ N (13p, Wdiag(o3p)W ). ®)
We minimize the mean squared error (MSE) between the predictions and the ground truth:

Luse =E|ly-9113, (6)
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where E is the expectation. The overall training loss is defined as follows:

)

L = Lperer + ANeLyir + Avse Luse

where Lpgrer denotes the loss functions used for deterministic 3D hand pose estimation in
HaMeR [42], and Ayz; and Aysp are the weight factors for the uncertainty modeling terms.

By sampling from the probabilistic hand joint output space and applying a single linear
transformation, we naturally capture the correlation between hand joints, which can also be
formulated analytically. We position our method as a mid-representation between diagonal
and full covariance modeling. First, it offers higher expressiveness than diagonal covariance
modeling in capturing inherent correlations between hand joints. By adopting probabilistic
space, our output distribution models hand joint correlation structure as full covariance
modeling. Second, our method requires less number of parameters compared to full covariance
modeling, which involves the square of output dimension—making it impractical for high-
dimensional outputs and prone to optimization instability. In contrast, our approach introduces
only a single linear transformation matrix on top of diagonal covariance modeling, providing
both computational efficiency (see Table 1) and improved optimization stability.

4 Experiments

4.1 Experimental Setup

Datasets. We train our method on 2.7M training examples from multiple datasets that
provide 2D or 3D hand annotations as in HaMeR [42]. This includes FreiHAND [59],
HO3D [18], MTC [52], RHD [58], InterHand2.6M [37], H203D [18], DEX YCB [6], COCO
WholeBody [25], Halpe [15] and MPII NZSL [48]. To evaluate the quality of the estimated
uncertainty and 3D hand pose estimation accuracy of our method, we use two standard
benchmarks for 3D hand pose estimation, FreiHAND [59] and HO3Dv2 [18] which provide
ground truth 3D hand annotations.

Metrics on 3D hand pose estimation. We follow
the typical protocols used in previous works [32, 40,
42], and report PA-MPJPE and AUC; for evaluating
estimated 3D hand joints and PA-MPVPE, AUCy,
F@5mm and F@15mm for evaluating estimated 3D
hand mesh. PA-MPJPE and PA-MPVPE are measured %
in mm.

Metrics on uncertainty estimation. To evaluate the
quality of the estimated uncertainty, we use sparsifi-
cation curves [22, 43]. The predicted hand joints are
sorted based on the estimated uncertainty. Given an er-
ror metric €, we evaluate the top x% most certain joints.
Ideally, if the uncertainty estimates are well-calibrated,

(a) FreiHAND

— - Diagonal
Full

£y

. — ours
55 T ours - oracle
rrrrr Random

Mean MPJPE Error [mm]
|

10 20 30 40

S0 60 70 8 % 100
Percentage of Joints [%]

(b) HO3Dv2

\‘

— "
Diagonal

— Full

— ours
ours - oracle

--- Random

Mean MPJPE Error [mm]
- Iy

o f0 20 8 90 100

30 40 50 60 70
Percentage of Joints [%]

the error is supposed to decrease as uncertain predic-
tions are removed. We vary x from 2 to 100, increment-
ing by 2, and report the area under the sparsification
curve (AUSC) as in previous work [21]. This metric is
affected by both prediction accuracy and how similar
the uncertainty-based sorting is to the actual error-based

Figure 3: Sparsification curves.
We compare sparsification curves
obtained by different methods of es-
timating the uncertainty of 3D hand
joints.
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Method FreiHAND [59] HO3Dv2 [18]

AUSC| AUSE| Pearson’sp? AUSCJ] AUSE] Pearson’sp 1
Diagonal 655 54.6 0.393 511 63.3 0.448
Full 648 47.6 0.453 512 64.3 0.493
Ours 642 42.2 0.569 505 57.6 0.600

Table 2: Quantitative evaluation on uncertainty estimation. We demonstrate the effective-
ness of our parametrization in consistently enhancing all three metrics.

(a) FreiHAND (b) HO3DV2

Diagonal ) Full _ Diagonal Full

2 v ,
Image £ W C\ C.\

] ™1a

Erfor  Uncertainty  Error  Uncertainty

Error  Uncertainty

Image

g

Error  Uncertainty  Error  Uncertainty

Image

Error  Uncertainty  Error  Uncertainty

Image

Figure 4: Qualitative results of uncertainty estimation. We evaluate the quality of un-
certainty estimates by comparing our method with existing uncertainty modeling methods.
Specifically, we visualize the prediction errors alongside the corresponding uncertainty values.
A desirable property of an uncertainty estimator is its proportionality to the actual prediction
error—i.e., higher uncertainty values should correspond to higher prediction errors. The
uncertainty estimated by our method shows stronger correlation with the prediction error,
indicating its effectiveness in capturing model confidence.

sorting. To only evaluate the latter, we also report the area under the sparsification error
(AUSE) [22] by subtracting the oracle sparsification, which is obtained by sorting joints
based on the € magnitude, from the estimated sparsification curve. We assume MPJPE as
€. The uncertainty of each joint is measured as the trace of its estimated covariance matrix.
Additionally, we report Pearson’s correlation coefficient, p, to quantify the degree to which
the predicted uncertainty correlates with the true error. Pearson’s p measures the strength
and direction of the linear relationship between two continuous variables, providing a value
between -1 and 1.

Baselines. We implement two conventional uncertainty modeling methods based on Gaussian
negative log-likelihood (NLL) as baselines and compare them with our method. (1) Diagonal:
The uncertainty regressor outputs per-joint variances under the independent assumption; the
uncertainty is modeled using a diagonal covariance matrix. (2) Full: The uncertainty regressor
outputs all elements of the covariance matrix, modeling the uncertainty with a full covariance
structure (see Sec. 3.1).
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(a) FreiHAND
Diagonal Full Ours

o

25

Uncertainty
Uncertainty
Uncertainty

s

[ 0
MPJPE Error

0.6 0
MPJPE Error

(b) HO3Dv2
Diagonal Full Ours

05 R
MPJPE Error

Uncertainty
Uncertainty
Uncertainty

042 10 °%2 04 1o 0% 04 10 0

0’ 0
MPJPE Error

0.6 08 0.6
MPJPE Error MPJPE Error

Figure 5: 2D histograms of model error and estimated uncertainty. We show 2D his-
tograms of the x-axis representing the model’s MPJPE error and the y-axis representing the
estimated uncertainty on (a) FreiHAND [59] and (b) HO3Dv?2 [18] datasets.

Implementation details. In all experiments, including both the baselines and our method,
we set N = 25, Ayrp = Se-4. We additionally set Aysg = 5e-4 in our method. We train the
models on a single NVIDIA A100 GPU for 550k iterations using the AdamW optimizer with
a weight decay of le-4, B; = 0.9, and 3, = 0.999. The learning rate is initialized as le-6,
and the mini-batch size is set to 64. All other experimental settings follow those used in
HaMeR [42].

4.2 Uncertainty Estimation

We conduct evaluations to assess the quality of the estimated uncertainty. The quantitative
comparison with existing uncertainty modeling methods is presented in Table 2. The results
demonstrate that our method outperforms the baselines across all metrics. The sparsification
curves in Fig. 3 show that although all methods perform similarly when evaluated on all
3D joints, our method achieves significantly higher accuracy than the others as 3D joints
with high uncertainty are removed. This indicates that our uncertainty better reflects true 3D
joint prediction errors. We additionally validate this by a qualitative comparision in Fig. 4,
wherein our uncertainty correlates better with the prediction error. Furthermore, we present
qualitative results of the Pearson correlation by visualizing a 2D histogram of the model’s
MPIJPE error and its estimated uncertainty. As shown in Fig. 5, the uncertainty estimates from
our proposed method correlate with the model’s error better than those from the Diagonal
and Full baselines, while exhibiting fewer outliers.

4.3 3D Hand Pose Estimation

We evaluate the 3D hand pose estimation capability of our method. Table 3 compares our
approach with existing 3D hand pose estimation methods that do not support uncertainty
estimation, as well as with uncertainty modeling baselines. For a fair comparison, we also
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Method FreiHAND [59] HO3Dv2 [18]
PA-MPIPE | PA-MPVPE| F@57 F@I51 AUC;? PA-MPJPE| AUCy! PA-MPVPE| F@51 F@I51
I2L-MeshNet [36] 74 7.6 0681 0973  0.775 112 0.722 13.9 0409 0932
Pose2Mesh [10] 77 78 0674 0969  0.754 125 0.749 12.7 0441 0.909
12UV-HandNet [7] 6.7 6.9 0707 0977  0.804 9.9 0.799 10.1 0.500  0.943
METRO [31] 6.5 6.3 0731 0984  0.792 104 0.779 111 0484  0.946
MobRecon [8] 57 5.8 0784  0.986 - 9.2 - 9.4 0.538  0.957
AMVUR [24] 6.2 6.1 0767 0987  0.835 83 0.836 82 0.608  0.965
HaMeR [42] 6.0 57 0785 0990  0.846 7.1 0.841 79 0.635  0.980
Deterministic 6.1 57 0785 0990  0.845 78 0.840 8.0 0629  0.980
Diagonal 6.1 5.8 0782 0990 0847 7.1 0.842 7.9 0638  0.981
Full 6.1 59 0773 0989  0.849 7.6 0.844 7.8 0.644  0.981
Ours 60 57 0784 0990 0847 7.6 0.843 7.9 0.640  0.981

Table 3: Quantitative evaluation on 3D hand pose estimation. Our method maintains
comparable performance compared to 3D hand pose estimation methods and uncertainty
modeling baselines.

Method FreiHAND [59] HO3Dv2 [18]

AUSC| AUSE|] Pearson’sp?T AUSC| AUSE/| Pearson’sp 1
Ours w/o linear layer 648 47.9 0.544 509 61.4 0.524
Ours 642 42.2 0.569 505 57.6 0.600

Table 4: Ablation study on joint correlation in uncertainty estimation. We show that our
joint correlation modeling consistently improves uncertainty estimation performance across
all three metrics.

Method FreiHAND [59] HO3Dv2 [18]
PA-MPIPE | PA-MPVPE| F@51 F@I151 AUC;t PA-MPIPE| AUCy{ PA-MPVPE| F@51 F@l151

Ours w/o linear layer 6.1 5.8 0782 0990  0.847 77 0.843 7.9 0638  0.981

Ours 6.0 57 0784 0990  0.847 7.6 0.843 7.9 0.640  0.981

Table 5: Ablation study on joint correlation in 3D hand pose estimation. We demonstrate
that our joint correlation modeling shows improvement in 3D hand pose estimation accuracy.

assess our method against a deterministic baseline denoted as Deterministic, which fine-
tunes the pre-trained network without incorporating uncertainty modeling. Compared to 3D
hand pose estimation methods and deterministic baseline, our model achieves competitive
performance on both benchmarks, while additionally providing uncertainty estimation. In the
comparison of uncertainty modeling baselines, although the full baseline achieves slightly
better 3D hand pose estimation performance on the HO3Dv2 [18] evaluation dataset, our
method offers far more reliable uncertainty estimates through efficient joint correlation
modeling (see Tables 1 & 2).

4.4 Ablation Study

Ablation study on joint correlation. We conduct an ablation study to investigate whether
modeling joint correlations using a linear layer improves uncertainty estimation. Specifically,
we remove the linear layer, resulting in a probabilistic hand joint output space constructed
under an independence assumption, where uncertainty is modeled with per-joint variance.
The quantitative results in Tables 4 and 5 support our conclusion that incorporating the linear
layer to capture joint correlations enhances the performance of uncertainty estimation and 3D
hand pose estimation.
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s

ESS Method AUSC| AUSE] Pearson’sp 1
gm AMVUR [24] 586 113 0.127

%“ s AMVUR Ours 505 57.6 0.600

840 AMVUR - oracle

e A N O [ poeem Table 6: Quantitative comparison with

ercentage of Joints (%]
Figure 6: Sparsification curve of
AMVUR [24]. The competing method
exhibits a large discrepancy between

AMYVUR [24]. Our method demonstrates con-
sistently better performance than the compet-
ing method across all uncertainty evaluation

X . metrics.
uncertainty-based and error-based sortings.
# Samples FreiHAND [59] HO3Dv2 [18]
AUSC| AUSE| Pearson’spf AUSCJ] AUSE] Pearson’sp 1
1 653 52.7 0.399 507 58.6 0.557
655 54.3 0414 510 62.4 0.484
10 648 47.1 0.551 507 59.1 0.536
25 642 42.2 0.569 505 57.6 0.600

Table 7: Effect of the number of samples on uncertainty estimation. We change the number
of samples in output space from 1 to 25 and evaluate the quality of estimated uncertainty.

Comparison with related work. We compare the uncertainty estimation quality of our
method on the HO3Dv?2 [18] dataset with an open-sourced competing method [24], which
models the 3D hand joint output space as a probabilistic distribution and inherently supports
uncertainty measurement. As shown in Table 6, our method outperforms the competing
approach in terms of uncertainty estimation performance. Furthermore, the sparsification
curve of AMVUR [24] in Fig. 6 indicates that it struggles to align uncertainty-based sorting
with actual error-based sorting.

Ablation study on number of samples. Our method draws the samples in the output space
and feed-forward these samples to the regressor. We conduct an ablation study to investigate
the effect of the number of samples on uncertainty estimation by varying this number. Table 7
presents the results. In general, the larger the number of samples, the better the performance.
We select the default number as 25, considering the trade-off between performance and
computational complexity.

5 Conclusion

This paper addresses two key challenges in existing 3D hand pose estimation models: the
inability to estimate aleatoric uncertainty, and the lack of uncertainty modeling that incorpo-
rates joint correlation knowledge. We estimate and evaluate the aleatoric uncertainty in 3D
hand pose estimation. We propose a new parametrization that leverages a single linear layer,
which effectively captures the inherent hand joint correlation and achieves a better trade-off
between modeling joint correlations and computational efficiency. To enable this, we formu-
late a probabilistic hand joint output space and then transform it into the correlation-aware
space using the single linear layer. Experimental results show that the estimated aleatoric
uncertainty of our method correlates well with the prediction error while maintaining 3D
hand pose estimation performance.
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